Renewable Power Generation from Biomass -Perspective from Essent

EOS-LT Conference 27 May 2010

Geert Kleisterlee Senior Business Developer

	uction
Introd	liction
	UGUUI

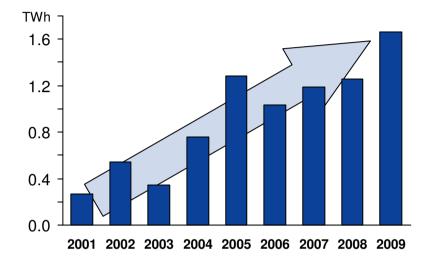
Why biomass co-firing

The Dutch renewable target

Availability and sustainability

Climate & cost effectiveness

Strategy and investments



10 years of investment and improvement have resulted in a substantial share of renewable energy from biomass mainly by co-firing

2nd biomass ı Capacity:	mill Amer 9 83 MW					
Bio-oil Claus A (test 2002)						
Capacity:	92 MW					
Installation ha	ammer mills Amer 8					
Capacity:	96 MW					
Logistical sys	Logistical system					
Туре:	silo's, conveyors					
Unloading fac	Unloading facilities					
Туре:	pneumatic discharger					
1 st biomass m	1 st biomass mill Amer 9					
Capacity:	83 MW					
Gasifier Ame	r9					
Capacity:	33 MW					
Fuel type:	waste wood					
Stand alone plant Cuijk						
•	25 MW					
e ap a only .	forest residues					
Start design:	1995					

Facts & figures

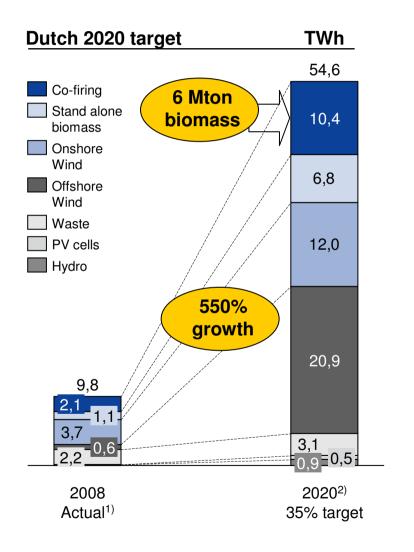
- 130 mio Euro of investments, of which
- 60 mio Euro in gasification
- 1,5 TWh in 2009 from wood pellets alone
- 755 kton wood pellets out of 1 Mton biomass
- Co-firing capacity Amer 9 of 35% on a mass basis (short term ambition 50%)
- Savings of 1 million ton of CO2

Introduction

Why biomass co-firing

The Dutch renewable target

Availability & sustainability


Climate & cost effectiveness

Strategy & investments

Within the Dutch 2020 target co-firing has a prominent role but more important it is the most feasible part in the overall solution

Feasibility check co-firing Old coal capacity included 11.0 10.4 Learning curve for newcomers and new plants limits growth to 20% Co-firing in experienced plants to 30-50% Pre-treatment technologies not ECN Essent included Analysis

Feasibility other renewables in program

- Offshore Wind: technically capped by construction of 1000 MW/year (= 3,4 TWh/year)
- Onshore Wind: 4000 MW seems feasible. Additional 2000 MW strongly hindered by institutional and social resistance (= $12 \rightarrow 8$ TWh)
- Dedicated Biomass: 6.8 TWh is based on 100% utilization of the theoretical maximum of available feedstock in NL
- Waste to Energy: mainly capped by the availability of domestic waste
- Energy from Water & PV: only marginal contribution expected in the coming decades

1) 2) Hydro 2008 = 102 GWh, PV 2008 = 38 GWh ECN 'Verkenning Schoon en Zuinig', April 2009

May 2010

Introduction

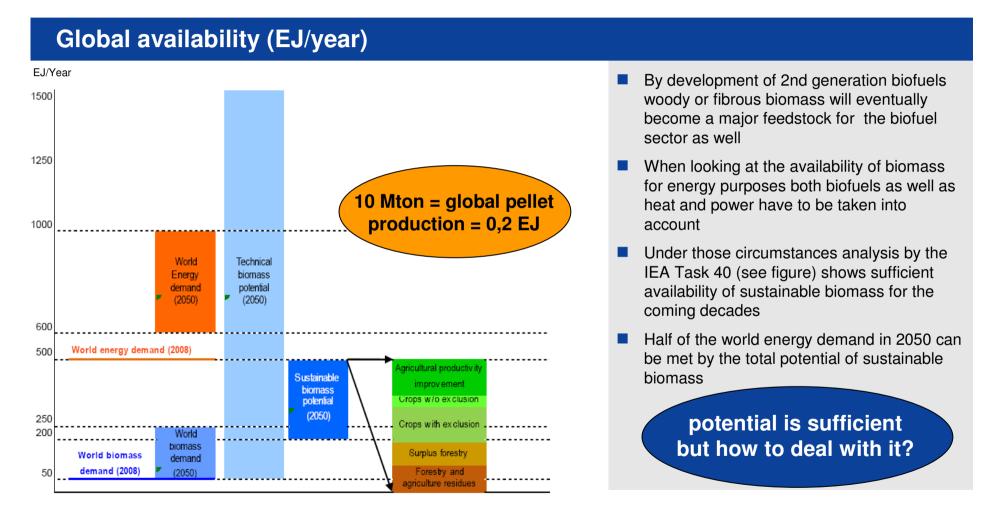
Why biomass co-firing

The Dutch renewable target

Availability & sustainability

Climate & cost effectiveness

Strategy & investments


Wood is the preferred biomass feedstock for direct combustion in conventional power plants

Product		Kwalification	
Forestry	 Logs Thinnings Paper & pulp Residue 	 High energy content Low ashes Large supply potential Sustainability is manageable 	
Agro	 Conventional energy crops Grass, oil and rape Sugar and starch crops Lignocellulosic feedstocks Algae 	 Medium energy content High ash content Energy vs. food problem 	
Waste	 Agricultural waste Industrial waste Construction waste Sewage 	 Low price Low energy content Medium ashes Regionally abundant 	

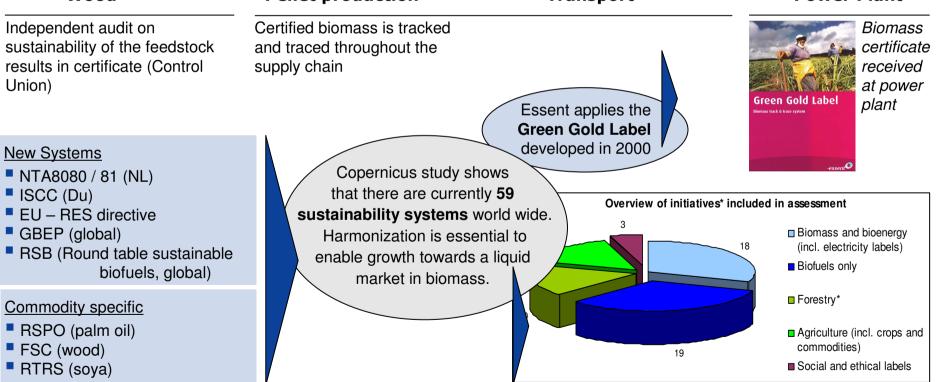
May 2010

Global availability of biomass is sufficient to fulfill a major role in our ambition towards a more sustainable world

Source: Technical biomass supply potentials, sustainable biomass potential, expected demand for biomass (primary energy) based on global energy models and expected total world primary energy demand in 2050. Adapted from Dornburg et al. (2008) based on several review studies.

Our current certification system offers a way to guarantee the sustainability of biomass all the way through the supply chain

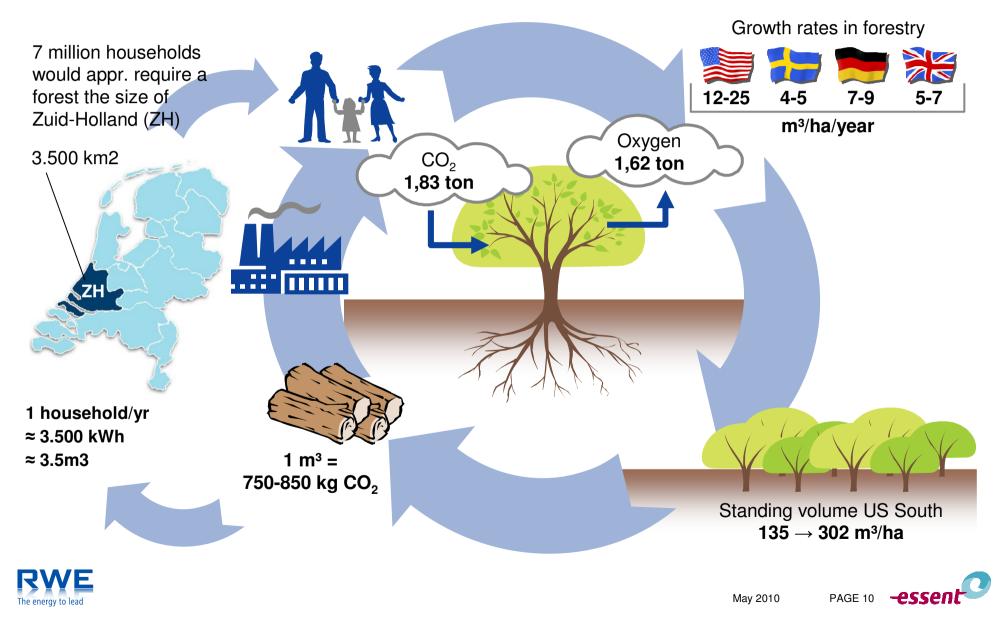
Wood


Pellet production

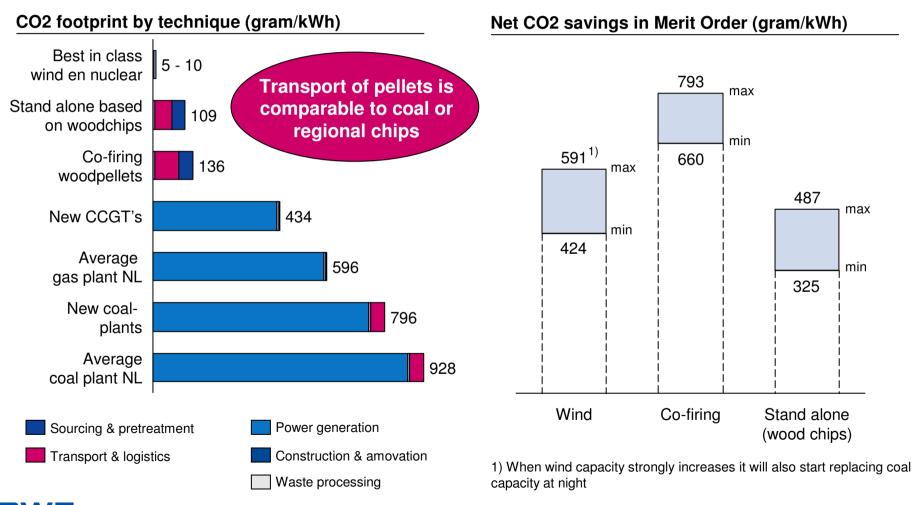
Transport

Power Plant

PAGE 8

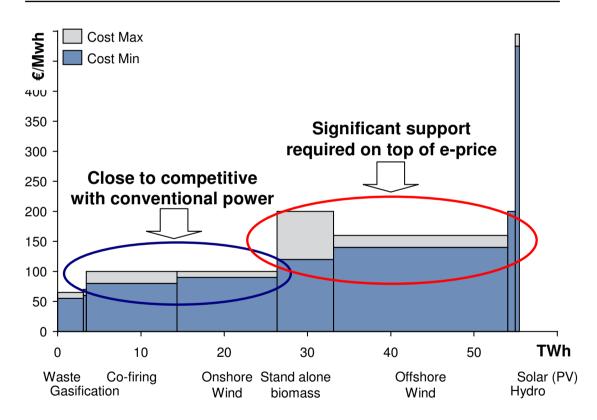

-esse

	Int	roduction				
	Why biomass co-firing					
The Dutch renewable target						
Availability & sustainability						
Climate & cost effectiveness						
	Strategy & investments					



Woody biomass contributes to CO2 reduction by closing a continuous natural cycle and offering significant optimization opportunities

Co-firing performs well on carbon footprint compared to other techniques and even results in the highest net CO2 savings within the Merit Order



The energy to lead

Together with onshore wind co-firing will remain the most cost efficient sustainable solution towards 2020 and beyond 2020 Estimate

2020 integral cost based on the 54 TWh Dutch renewable program

0 PAGE 12 -essent

Innovation and optimization of the supply and value chain will contribute to further reduction of cost and CO2

Forestry	Pelletization	Pre-treatment	Logistics	Power Plant
 optimized plantation management will increase output modern harvesting technology fast growing trees and energy crops Species optimized for energy purposes 	 micro chipping → homogenous product facilitates further process using logging remains for drying purposes (avoid CO2 emissions due to rotting) 	 develop industrial scale continuous processes to facilitate improved grinding storable (hydrophobic, no biological activity) commodity capable 	 special pellet vessels will reduce cost and CO2 large potential in storage and handling logistic chain is key to further cost reduction 	 boiler behavior with co-firing above 35% mass CFD modeling Reduce efficiency losses Improve availability of mills and reduce stops

Stable investment climate driver for long term investments and innovation

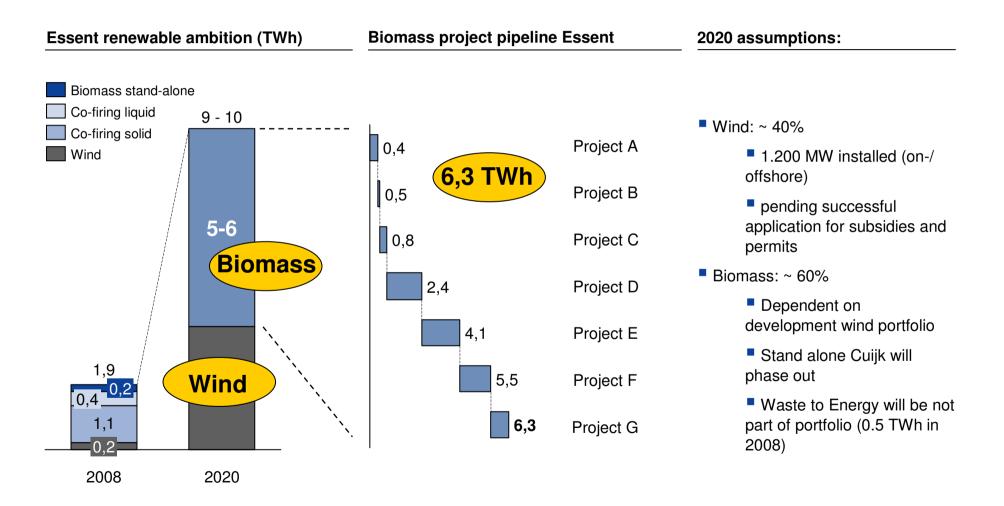
Introduction

Why biomass co-firing

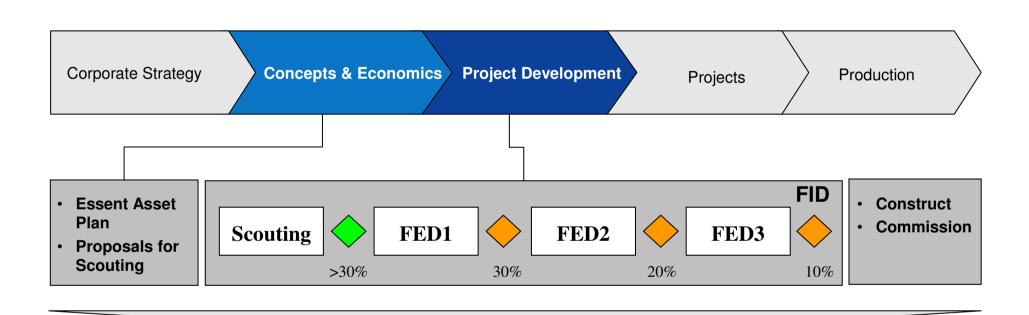
The Dutch renewable target

Availability & sustainability

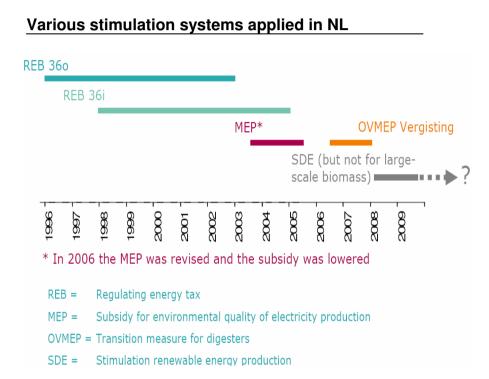
Climate & cost effectiveness

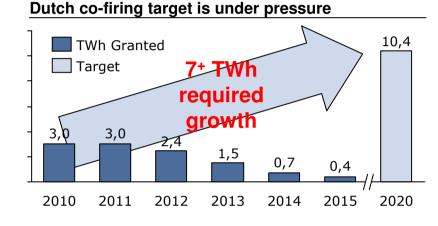

Strategy & investments

Essent has the ambition to expand its renewable portfolio to 10 TWh for which it has a well positioned co-firing pipeline


INDICATIVE

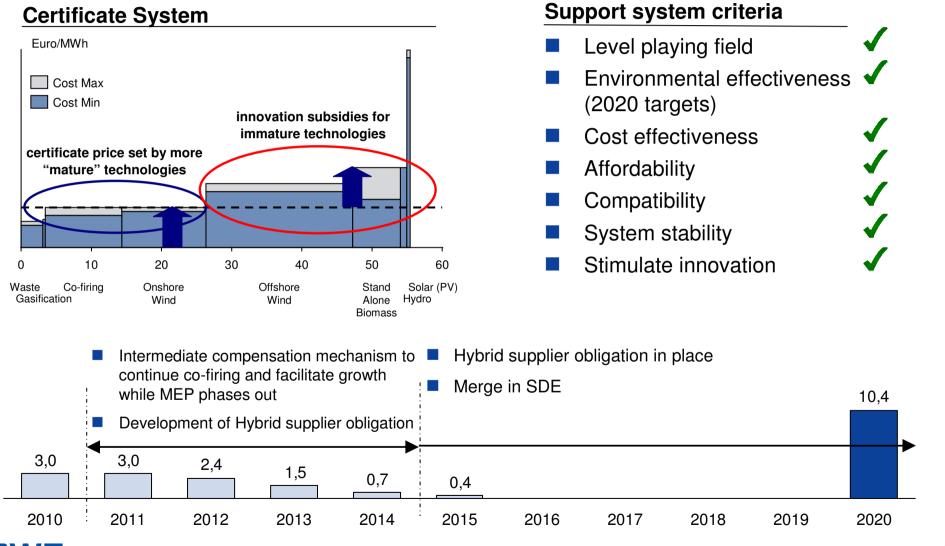
A successful project takes 3 – 4 years from idea to implementation passing several critical design stages and Final Investment Decision along the way




Average project takes 3 - 4 years and implementation is often dependant on plant revision stops

Project Development Pipeline

The Netherlands are still looking for an alternative support system as current subsidies are phasing out forcing project development to a halt



- Granted 10 year subsidy schemes (2003-2005) for co-firing are phasing out
- No new basis for investments in place to date
- Average project takes 3 4 years from start to implementation
- Plant revision takes place only every 4 years
- Separately 6 million tons of biomass have to be secured for which production facilities need to be erected

We see the hybrid supplier obligation as a solution for a stable market based system with an impulse to drive technology and secure targets

Key Messages

1

(2)

3

(4)

Why Co-Firing

Large scale co-firing is crucial in achieving the 20% sustainable energy goals of the government in 2020.

It is the most cost effective solution for society

It has the highest CO2 reduction potential

Large volumes are sustainably available world wide without competition for food

Next steps

- Development of a professional biomass supply chain / scale economics
- An effective (international) regulatory framework
- Consolidated (international) environmental sustainability standard

